

Content

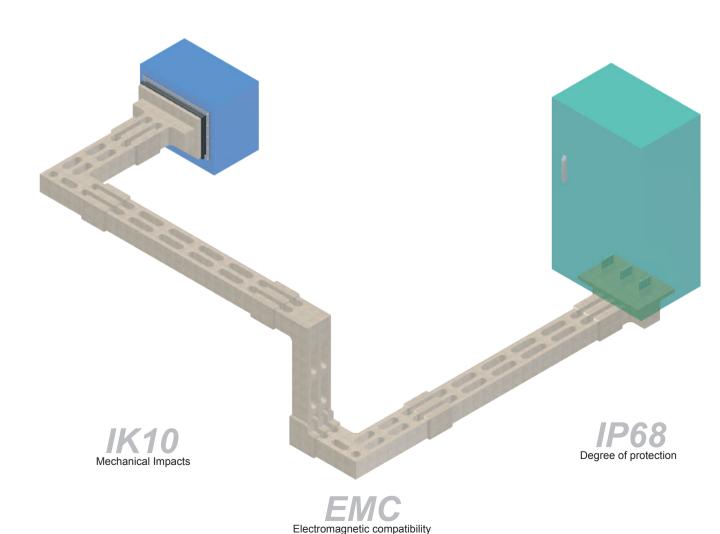
Content	1
Foreword	2
Excellence	3
Product Certification	4
Electrical Characteristics of Medium Voltage Busway	5
Product Specifications	6
Selection of Standard parts	9
Product installation	11
Assembly Diagrams of Medium Voltage Busway Junction	12
Medium Voltage Busway Horizontal Hanger Standard	13
Dimensions of Standard Terminal Elements for Medium Voltage Busway	14
Dimensions of Standard Terminal Elements Copper Plate for Medium Voltage Busway	16
Opening Requirement of Standard Terminal Element and Switchgear for Medium Voltage Busway	17
Medium Voltage Busway Terminal Element and Switchgear Standard Guideline	18
Product Design Theory / Product Model Identification	19
Medium Voltage Busway Routine Test Items	20
Projects Reference List	21

Foreword

Due to drastic increase in the requirement of safety and stability for power distribution among public engineering, the conventional power cable and metal -enclosed busway can no longer fulfill the requirement stated above. TAIAN-ECOBAR Technology Co., Ltd. was established in 1988 to further develop the cutting edge cast-resin insulated busway systems from Europe to reach its fullest potential.

TECOBAR product is built with excellent features of electrical characteristic and mechanical strength, fire and water proof, anti-corrosion, compact size, easy installation and most importantly maintenance free. Today, TECOBAR has become the first choice of power transmission serving broad range of applications from high-rise residential buildings to nuclear power plants.

With the reputation based on strong customer orientation, solid engineering support and fast delivery schedule, TECOBAR cater a complete package of services from conceptual design to commissioning to global clientele.


We will continue to make every effort to further enhance our services in our continuous pursuit for service excellence.

Excellence

- 1. Medium voltage products meet the standard of IEC 60694, IEC 62271-200, IEC 62771-201 IEC 62271-202 and IEEE C 37.23.
- 2. Compact, easy to install, no emission of toxic gas.
- 3. The purity of conductor is 99.9% for copper with conductivity above 98% IACS.
- 4. Low voltage drop, high short circuit current withstand, carried out overload + 20% for 2 hours.
- 5. Degree of protection tested in accordance with IEC-60529, IP68. Mechanical Impacts IK10.

- 6. Mixing excellent material such as non-organic volcanic rock with small amount of resin made of busway. With excellent insulation and heat dissipation properties.
- 7. Low EMC
- 8. Insulation level of class B 130°C.
- 9. Products have shown excellent results for at least 40 years, and passed aging test with safety operation over 50 years.
- 10. Maintenance free.

Product Certification

Electrical Characteristics of Medium Voltage Busway

1. Title: TECOBAR Medium Voltage Cast-Resin Insulated Non Segregated Phase Busway.

2. Product Description:

TECOBAR Medium Voltage Cast-Resin Insulated Busway is developed for power systems between 3.6kV~24kV. The product has features of safety and compact. It is designed to using insulation material to perform cast resin sealing to the copper (aluminum) conductor. The insulation material is cast resin containing non-organic volcanic rock and has excellent insulation characteristics and mechanical strengh, humidity-proof, non-combustible, and self-extinguishing features.

3. Applicable Scope:

TECOBAR medium voltage busway is manufactured in accordance with, IEC 60694, IEC 62271-200, IEC 62271-201, IEC 62271-202 and IEEE C37.23 standards. The elements included as below:

3.1 Straight elements, Elbow elements, T-elements and Terminal elements, etc.

4. Condition of Use:

TECOBAR medium voltage busway is composed of the parts listed in item 3.1. The elements are connected through junction units on site before cast molding with insulation mix to complete the medium voltage busway. Conditions for TECOBAR:

4.1 Altitude: below 1000m, indoor or outdoor site.

4.2 Ambient temperature: -45°C~65°C 4.3 Ambient humidity: 0%~100%

5. Technical Specifications:

5.1 Rated Voltage

Model	SH	PH	PE
Voltage	7.2kV	17.5kV	24kV

5.2 Frequency Hz: 50/60 5.3 System Type: 3 Φ 3w.

5.4 Conductor Material : Copper (Purity : 99.9% Conductivity : Above 98% IACS)

and Aluminum.

According to standards: JIS H3140, DIN 1787, DIN 1759, DIN 40500.

5.5 Electrical characteristics of each TECOBAR element:

Partial discharge:

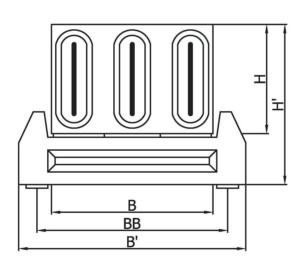
Partial discharge coulomb value less than 20pC.

Protection degree : ◎ In accordance with IEC 60529 IP68.

Mechanical impacts : ◎ In accordance with IEC 60068-2-75 IK10.

Insulation capabilities :

Max 50kV/1min. (PE Type).

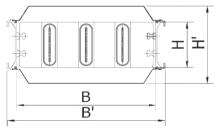

Tempreature rise limit : ○ At average ambient temperature of 35°C with daily peak 40°C

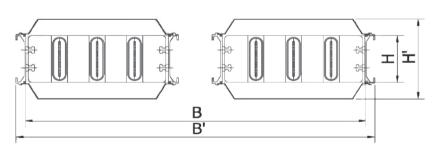
temperature rise of conductor ≤50K.

Product Specifications SH

50/60 Hz 1kV~7.2kV IP68 IK10

TYPE	B x H mm	BB mm	B' x H'	I _n (A) norm	I _n (A) 35/40°C	Cond. mm ²	R ₂₀ μΩ	R ₆₀ μΩ	R ₈₅ μΩ	χ μΩ	lCW kA/1Sec	Ipeak	P _{Loss} 90 W/m	Total Weight kg/m
COP Single														
SH1	160 x 100	200	250 x 155	1000	1040	300	53.6	62.0	67.3	122	25	65	205.1	48
				1250	1295	480	31.6	36.5	39.7	117	30	78	188.6	51
					1500	720	21.5	24.9	27.0	112	45	117	184.8	56


^{**}Please contact us for specific layouts and connection details.**Please refer to the temperature correction coefficient of rated current on page 19 while ambient temperature exceeds 40°C.

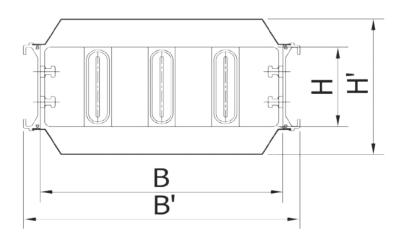

Product Specifications PH

50/60 Hz 7.2kV~17.5kV IP68 IK10

											30/00112	1.2KV~11.5K	A 11.00 11/10
TYPE	B x H mm	B' x H'	I _n (A) norm	I _n (A) 35/40°C	Cond. mm ²	$R_{20} \ \mu\Omega$	R ₆₀ μΩ	R ₈₅ μΩ	Χ μΩ	ICW kA/1Sec	Ipeak	PLoss90 W/m	Total Weight kg/m
COPP Single													
PH10	492 x 170	572 x 318	1600 2000 2500	1650 2070 2308 2560 2800	400 600 800 1000 1200	28.1 26.6 20.5 15.8 17.9	32.5 30.7 23.7 18.3 20.7	35.3 33.4 25.7 19.8 22.5	151 149 147 145 143	38 55 75 95 100	98.8 143 195 247 255	292.7 406.3 390.2 377.0 535.6	80 95 97 100 107
				2000	1200	11.5	20.1	22.5	143	100	233	333.0	101
PH16	492 x 230	572 x 378	3150	3215 3525 3711	1280 1600 1920	12.9 10.2 11.9	14.9 11.8 13.8	16.2 12.8 14.9	116 114 113	100 100 100	260 260 255	477.0 477.0 623.5	132 139 147
PH20	492 x 280	572 x 428	4000 5000	4208 4535 5000	2000 2400 3000	8.0 6.6 5.5	9.3 7.6 6.3	10.0 8.3 6.9	98 97 95	105 105 105	273 273 273	540.0 510.4 524.2	172 182 196
Double	Lines												
PH16	800 x 230	880 x 378	6300	6300	2 x 1600	7.0	8.1	8.8	51.3	120	312	1064.7	278
ALUN Single	IINUM Line												
PH10	492 x 170	572 x 318	1600 2000	1607 1815 2030 2223	600 800 1000 1200	46.6 35.7 29.8 25.8	54.0 41.3 34.4 29.9	58.5 44.8 37.4 32.4	150 148 146 144	85 85 85 85	216 216 216 216	456.7 442.7 455.4 477.6	84 86 88 91
													-
PH16	492 x 230	572 x 378	2500	2502 2736 2897	1280 1600 1920	23.8 19.8 16.9	27.6 23.0 19.5	29.9 24.9 21.2	117 115 114	100 100 100	255 255 255	569.3 553.4 524.1	124 129 135
DUIGO	402 202	F72 v 420	21.50	2222	2000	15.0	10 /	10.0	00	100	255	661.2	166
PH20	492 x 280	572 x 428	3150 4000	3332 3580 4005	2000 2400 3000	15.9 12.9 11.9	18.4 14.9 13.8	19.9 16.2 14.9	99 98 96	100 100 100	255 255 255	661.3 604.4 728.7	166 175 187

Double Lines

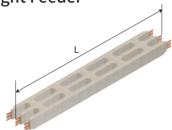
^{**}Please contact us for specific layouts and connection details.


^{**}Please refer to the temperature correction coefficient of rated current on page 19 while ambient temperature exceeds 40°C.

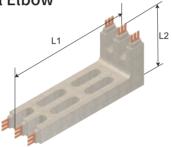
Product Specifications PE

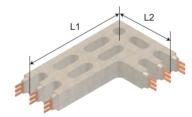
50/60 Hz 24kV IP68 IK10

TYPE	B x H mm	B' x H'	I _n (A) norm	I _n (A) 35/40°C	Cond. mm ²	R20 μΩ	R ₆₀ μΩ	R ₈₅ μΩ	Χ μΩ	lCW kA/1Sec	Ipeak	PLoss90 W/m	Total Weight kg/m
COPP Single													
PE10	570 x 150	650 x 378	2000 2500	1950 2174 2637	600 800 1200	31.8 24.8 17.9	36.7 28.7 20.7	39.9 31.1 22.4	156 153 149	100 100 100	255 255 255	461.8 438.6 461.8	100 105 110
PE16	570 x 210	650 x 438	3150 4000	3203 3500 4019	1600 1920 2400	13.9 11.9 10.9	16.1 13.8 12.6	17.4 14.9 13.7	121 119 117	100 100 100	255 255 255	544.1 557.9 668.0	145 148 153
ALUN Single	/INUM Line												
PE10	550 x 150	650 x 378	1250 1600 2000	1438 1660 2004	600 800 1200	46.6 35.7 25.8	54.0 41.3 29.9	58.5 44.8 32.4	157 155 151	65 80 100	165 204 255	349.6 349.8 394.7	89 91 94
PE16	550 x 210	650 x 438	2500	2667	1600	19.8	23.0	24.9	122	100	255	513.1	115
PE20			3150	3210	2400	13.9	16.1	17.4	118	100	255	544.1	122

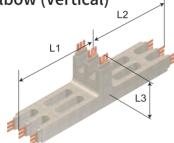


^{**}Please contact us for specific layouts and connection details.**Please refer to the temperature correction coefficient of rated current on page 19 while ambient temperature exceeds 40°C.

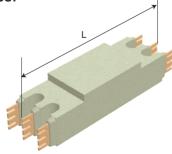

Selection of Standard Parts


Model	Length
RE	L=1000mm\2000mm
	3000mm \ 4000mm (Max)

Vertical Elbow


Model	Length
HL1	L1+L2=1000mm
HL2	L1+L2=2000mm
HL1	L1=550mm L2=450mm

Horizontal Elbow

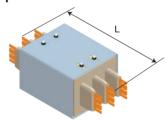

Model	Length
HB1	L1+L2=1000mm
HB2	L1+L2=2000mm
HB1	L1=550mm L2=450mm

Tee Elbow (Vertical)

Model	Length
TL2	L1=L2=L3=500mm

Reducer

Model	Length
TF	L=1200mm


Selection of Standard Parts

Phase Switch Feeder

Model	Length
PC1	L=1200mm

Expansion

SH/PH/PE series (7.2kV/17.5kV/24kV)

Model	Length
EX	L=1000mm

AG Type Terminal

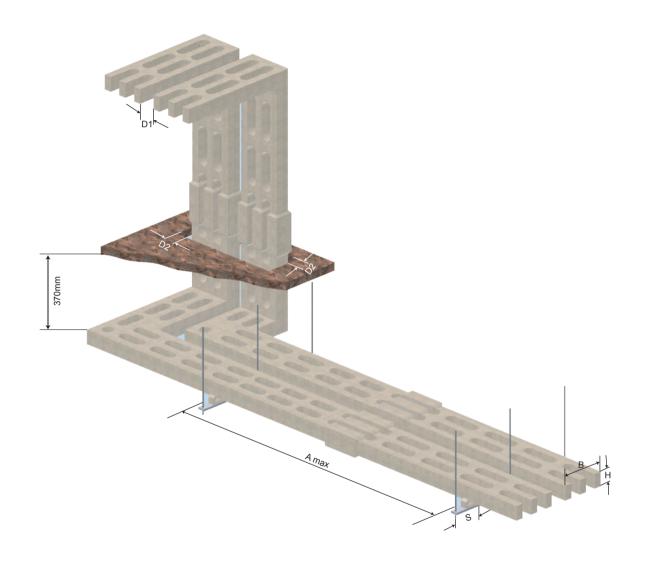
SH/PH/PE series (7.2kV/17.5kV/24kV)

Mode	l Length
AG1	Refer to Page 14

AO Type Terminal

Model	Length
AO1	Refer to Page 15

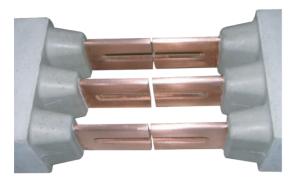
AG Type Terminal



PH/PE series (17.5/24kV)

Model	Length
AG1	Refer to Page 14

Product Installation


Unit: mm

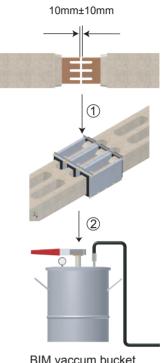
	External Size	Limit of Hange Pitcl		Minimum p between bus	S:		
Туре		Horizontal	Vertical	Layout of busway arrangement	Distance between wall opening and busway	Distance between Hanger	
	В×Н	Installation	Installation		D2 D2	and Busway	
SH1	160×100			150	60	55	
PH10	322×150						
PH16	322×210	1500	4000	250	100	75	
PH20	322×260		1000				
PE10	570×150			150 (Enclosure)	120	75	
PE16	570×210			130 (Linclosure)	120	15	

Note: Distance between hangers and busway are allowed to be adjusted on site while required.

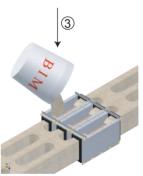
Assembly Diagrams of Medium Voltage Busway Junction

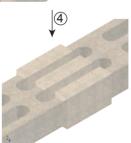
Distance between two elements are within 10mm±10mm (inclusive). The distance can be flexibly adjusted on site by the requirement of construction.

► Illustration of JUNCTION assembly.



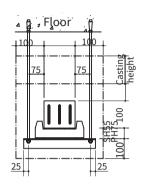
The assembly bolt of Junction must be secured by torque wrench.

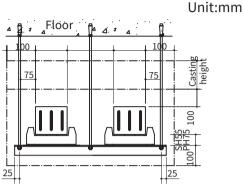

Illustration of cast-resin after completion.

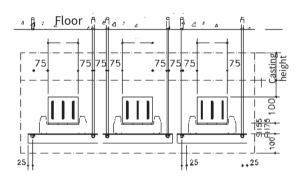


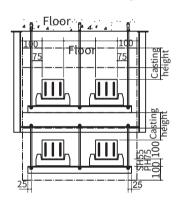
Method of cast-resin work on-site. Refer to installation guide for casting method on site

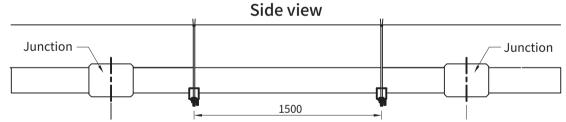
BIM vaccum bucket

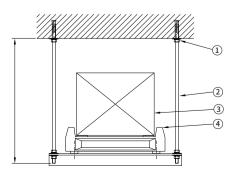



Torque of bolt during work:								
Specs	M12							
Torque value (N-m) for Cu	74							
Torque value (N-m) for Al	60							


Medium Voltage Busway Horizontal Hanger Standard


Cross-sectional Diagram of Single-Busway


Cross-sectional Diagram of Dual-Busway


Cross-sectional Diagram of Triple-Busway

Cross-sectional Diagram of Quadruple-Busway

- 1.The installation pitch between each hanger has to comply with the standard as above. If the work condition can not meet the standard, it may be adjusted according to the condition on site. However, it must meet the requirement described in page 18 of the installation guide: minimum pitch requirement of the busway.
- 2.The space required for installing busway is shown in the diagram. The safety space above the busway should have 100mm + casting height of 270mm = 370 mm for clearance standard of installation space. In addition, the height of the floor should be within 5m above the ground to allow expansion of bolts, full-thread bolts, and channel, etc. to install at the bottom of the floor.
- 3.One set of L-shape stopping plate part.

No.	Name of Part	Specs	Remark
1	Inner thread inflated screws	1/2"*2"	Zinc-plated item.
2	Full thread bolts	1/2"	Zinc-plated item.
3	Busway		TECOBAR
4	Insulation support	BIM (Refer to Product Specifications)	TECOBAR

Dimensions of Standard Terminal Elements for Medium Voltage Busway

AG Type Terminal Elements

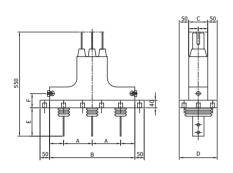


Figure 1

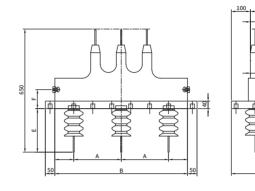
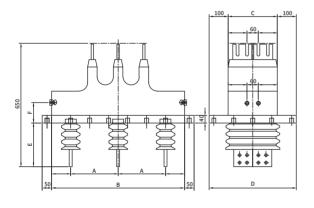



Figure 2

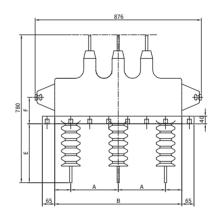
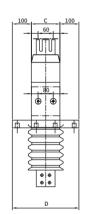
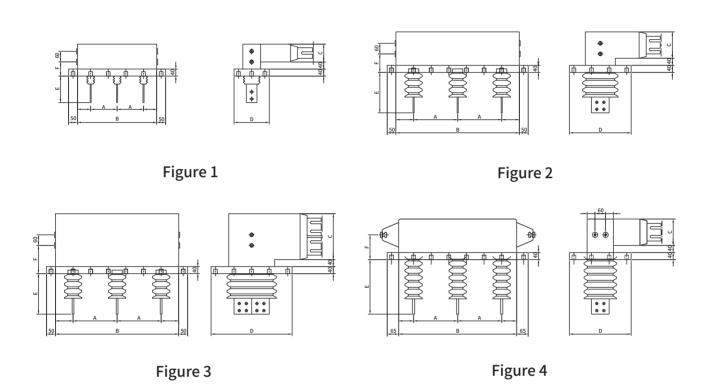



Figure 4

Unit: mm

Figure	Туре		3Ф3w										
No.		А	В	С	D	Е	F						
Figure 1	SH1	150	450	100	200	150	75						
Figure 2	PH10	250	700	150	350	230	90						
Figure 2	PH16	250	700	210	410	230	100						
Figure 3	PH20	250	700	260	460	230	100						
Figure 4	PE10	250	700	150	350	315	100						
rigure 4	PE16	250	700	210	410	315	100						


Note 1: The design is in accordance with IEC-815 standard, pollution class is classified as class II .

Note 2: The design needs to be revised if require pollution class is greater than $\,\rm\,II\,.$

Dimensions of Standard Terminal Elements for Medium Voltage Busway

AO Type Terminal Elements

							Unit:mm					
Figure	Type		3Ф3w									
No.	.,,,,,	А	В	С	D	Е	F					
Figure 1	SH1	150	450	100	200	150	80					
F: 2	PH10	250	700	150	350	230	105					
Figure 2	PH16	250	700	210	410	230	105					
Figure 3	PH20	250	700	260	460	230	160					
Figure 4	PE10	250	700	150	350	315	90					
	PE16	250	700	210	410	315	90					

Note 1: The design is in accordance with IEC-815 standard, pollution class is classified as class II .

Note 2 : The design needs to be revised if require pollution class is greater than $\,\rm\,II\,.$

Dimensions of Standard Terminal Elements Copper Plate for Medium Voltage Busway

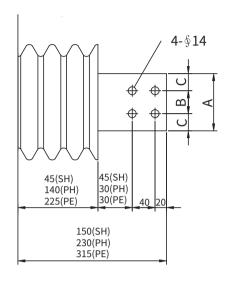
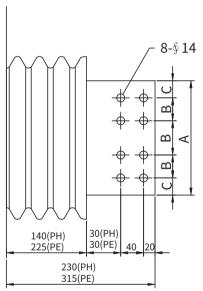
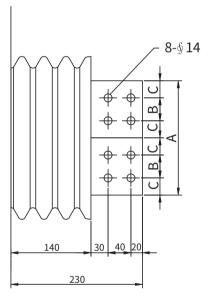



Figure 1

Figure 2



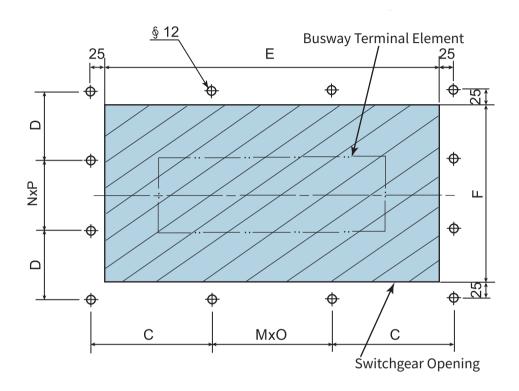
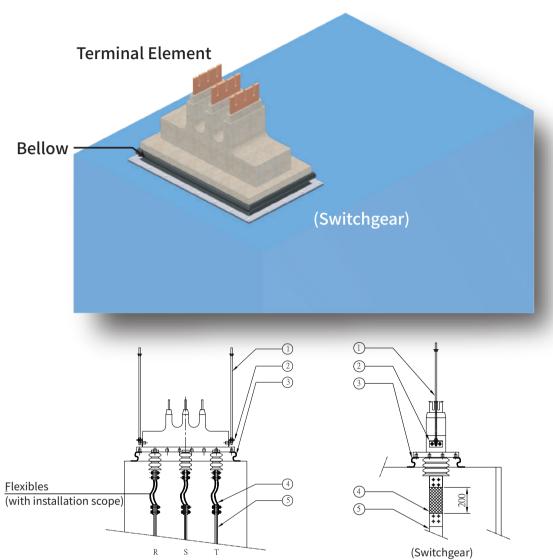

Figure 3

Figure 4

Figure No.	Turns	Type of	Dimensions (unit:mm)					
	Туре	Terminal Elements	Α	В	С			
Figure 1	SH1	AG/AO	60	30	-			
Figure 2	PH10 PE10	AG/AO	100	40	30			
Figure 3	PH16 PE16	AG/AO	160	40	20			
Figure 4	PH20	AG/AO	200	40	30			

Opening Requirement of Standard Terminal Elements and Switchgear for Medium Voltage Busway

Busway Terminal Elements Opening Dimensions


Unit: mm

Type		AG	Туре	Tern	ninal	Elen	nents		AO Type Terminal Elements						Remark		
	Р	С	D	Е	F	М	N	0	С	D	Е	F	М	N	Р	0	Remark
	-	100	75	450	100	3	-	100	100	75	450	100	3	-	-	100	with flange
SH1	-	-	-	510	160	-	-	100	-	-	510	160	-	-	-	100	without flange
	-	125	130	560	210	5	-	120	70	130	560	210	5	-	-	120	with bellow
DU10/DE10	-	125	100	700	150	5	1	100	125	100	700	150	5	1	100	100	with flange
PH10/PE10	130	130	75	810	360	5	2	120	130	75	810	360	5	-	130	120	with bellow
DU1C/DE1C	-	125	130	700	210	5	1	100	125	130	700	210	5	1	100	100	with flange
PH16/PE16	130	130	105	810	420	5	2	120	130	105	810	420	5	2	130	120	with bellow
PH20	-	125	105	700	260	5	2	100	125	105	700	260	5	2	100	100	with flange
	130	130	130	810	470	5	2	120	130	130	810	470	5	2	130	120	with bellow

Note: M, N=No. of Intervals among drillings.

Medium Voltage Busway Terminal Element and Switchgear Standard Guideline

No.	Name	Specs	Remark
1	Full threaded screw	1/2"	Zinc-plated product (Included in installation work)
2	Angle Steel	6t×50×50mm	Zinc-plated product (Included in installation work)
3	Terminal element seal	t=5mm	M10 screws (Outdoor type)
4	Flexibles	The 200mm reserved space between terminal element and switchgear are connected by flexibles.	Materials of this portion and connection work does not belong to the busway contractor.
5	Connection copper plate of switchgear	Depends on Switchgear design.	The drillings on copper plate are designed, processed and connected by switchger cortractor.

Note: This diagram is the standard connection interface.

Actual location of connection is determined case by case.

Product Design Theory

1. Temperature correction coefficient for rated current

Maximum ambient temperature °C	20	25	30	35	40	45	50	55	60
Daily average ambient temperature °C	15	20	25	30	35	40	45	50	55
Correction coefficient	1.18	1.14	1.09	1.05	1.00	0.94	0.88	0.82	0.75

2. Voltage drop calculation

 $\triangle U$ = $\sqrt{3} \times Is \times L \times (R = \cos \theta + X = \sin \theta) \times 10^{-6}$

△U =Voltage drop (Volts)

Is =Load current (Amps)

L =Line length (m)

R =Resistance $(\mu \Omega/m)$

X =Reactance (μ Ω/m)

 $\cos \theta$ =Power factor

 $\sin \theta = \sqrt{(1-\cos^2 \theta)}$

Product Model Identification

PH	10 E C 3	- 1000	
PH	Product series code	SH: 7.2kV PH: 17.5kV PE: 24kV	
10	Copper bar width	10 w=100mm, 16 w=160mm, 20 w=200mm	
E	Single/Double conductor of each phase	E Single line D Double line	
С	Conductor material	C Copper conductor A Aluminium conductor	
3	No. of conductors		
1000	Cross sectional area of conductor	1000mm ²	

Medium Voltage Busway Routine Test Items

A. Medium voltage busway dieletric tests: Insulation resistance test and power frequency voltage withstand test

	Electrical tests	Power frequency voltage withstand	Insulation resistance test
	Standards	IEC 60060	IEC 60270
Type	Ur	Ud at 60 Hz	q at 1.1 Ur
.71	kV	kV /1min	рС
SH series	7.2	20	≦ 20
PH series	17.5	38	≦ 20
PE series	24	50	≦ 20

Ur: Rated voltage Ud: Power frequency voltage q: Volume of partial discharge (pico-Coulomb)

B. Appearance inspection

The appearance of each element must be inspected. Result to be mentioned in final inspection report.

C. Dimension inspection

All dimensions are to be compared with customer's order sheet. Result to be mentioned in final inspection report.

D. Outgoing test report

Medium voltage parts shall be tested prior to shipment and attached with outgoing test report.

Projects Reference List

Energy & Infrastructure

- ABB PNG LNG (SINGAPORE)
- BYELORUSSIAN STEEL WORKS SUBSTATION (BELARUS)
- CHANG HU HYDRO POWER PLANT (CHINA)
- EGAT MAE MOH POWER PLANT (THAILAND)
- GUANGDONG SHAOGUAN #1 #2 V
- GUANGDONG TAISHAN NUCLEAR POWER PLANT PHASE I LOT11K 12KV (CHINA)
- GUANGDONG TAISHAN NUCLEAR POWERT (UNIT #1EXPANSION)
- GUANGDONG YANGJIANG **NUCLEAR POWER PLANT #5&6** (CHINA)
- GUANGDONG YANGJIANG NUCLEAR POWER PLANT (CHINA)
- GUANGDONG YANGJIANG NUCLEAR POWER PLANT (UNIT #3&4 LOT73C BUSDUCT) (CHINA)
- GUANGDONG YANGJIANG NUCLEAR POWER PLANT 220KV **AUXILIARY TRANSFORMER 6.6KV** (CHINA)
- GUANGXI FANGCHENGGANG NUCLEAR POWER PLANT (220KV TRANSFORMER - 10KV BUSDUCT) (CHINA)
- GUANGXI FANGCHENGGANG NUCLEAR POWER PLANT (UNIT #1&2 LOT73C BUSDUCT) (CHINA)
- GUANGZHOU ZDLX POWER CO.,LTD (CHP 2×300MW PROJECT) (CHINA)
- HSIN YUAN POWER PLANT (TAIWAN)
- HUBEI XINGFA CHEMICALS GROUP CO.,LTD (ENERGY MANAGEMENT PLATFORM) (CHINA)
- KIMANIS 300MW CCPP PROJECT (MALAYSIA)
- LINKOU POWER STATION (TAIWAN)
- LURGI AL-YER HYDROGEN PLANT (SAUDI ARABIA)
- MALAYSIA FAST TRACK3A
- (MALAYSIA)
- MARAFIQ (SAUDI ARABIA)
- MEGA MV (THAILAND)
- MINGTAN POWER STATION (TAIWAN)
- PT PLN MPP NIAS (INDONESIA)
- QINGYUAN PUMPED STORAGE POWER STATION (CHINA)
- SEM-CALACA (PHILIPPINES)

- SHANGHAI JINQIAO EXPORT PROCESSING ZONE (CHINA)
- SUZHOU POWER PLANT (CHINA)
- TAISHAN NUCLEAR POWER PLANT PHASE I LOT11K 12KV CAST-RESIN **BUSDUCT (AUXILIARY POWER** TRANSFORMER SECTION) (CHINA)
- TAIZHOU POWER PLANT (CHINA)
- TAIZHOU POWER PLANT/QUANTITY ADDITION (CHINA)
- TALIN POWER STATION (TAIWAN)
- TATAN POWER STATION (TAIWAN)
- THAI BINH 2 THERMAL POWER PLANT (VIETNAM)
- TUNG HSIAO POWER STATION (TAIWAN)
- XIANJU HYDRO POWER #1 #2 (CHINA)
- YINGXIUWAN GENERAL HYDRO
- POWER PLANT (CHINA) ZHENENG WENZHOU COAL-FIRED
- POWER PLANT #03A (CHINA) ZHENENG WENZHOU COAL-FIRED
- POWER PLANT #03B 6KV PROJECT
- ZHENENG WENZHOU COAL-FIRED POWER PLANT #4 6KV FEEDER **NEW BUILT (CHINA)**
- ZHENENG WENZHOU COAL-FIRED POWER PLANT (CHINA)
- ZHENENG WENZHOU COAL-FIRED POWER PLANT (PHASE II) (CHINA)
- ZHENENG WENZHOU COAL-FIRED POWER PLANT UNIT #5 (CHINA)

Iron & Steel

- FORMOSA HA TINH STEEL CORPORATION (COKING PLANT - 2) (VIETNAM)
- FORMOSA HA TINH STEEL CORPORATION (COKING PLANT) (VIFTNAM)
- FORMOSA HA TINH STEEL CORPORATION (WATER TREAMENT PLANT - 3) (CHINA)

NOVARTIS (SINGAPORE)

Projects Reference List

Chemical Plant

- AEROSIL (THAILAND)
- AMMONIA AND UREA PLANT IN MARY (TURKMENISTAN)
- ASAHI CHEMICAL (THAILAND)
- BINTULU PROJECT (MALAYSIA)
- KRABI (THAILAND)
- SIBIRSKY CHEMICAL (RUSSIA)
- PT. ASAHIMAS CHEMICAL (INDONESIA)

Petrochemical

- FU SHUN 6.3KV (CHINA)
- FU SHUN ETHYLENE (CHINA)
- HANWHA TOTAL ADL (SOUTH KOREA)
- NINGBO-CHEMICAL PLANT (CHINA)
- SAMSUNG TOTAL DAESAN (SOUTH KOREA)
- SHANGHAI ORIENTAL PETROCHEMICAL CORPL (CHINA)
- SHANGHAI XIAO HUA ADDITIONAL FEEDER (CHINA)
- SHANGHAI-YADONG PETROCHEMICAL PLANT (CHINA)
- SHENHUA NINGXIA COAL LIOUEFACTION PLANT (CHINA)
- SK ENERGY (SOUTH KOREA)

Oil & Gas

- S-Oil RUC (SOUTH KOREA)
- SK ENERGY (SOUTH KOREA)
- SHAANXI YANCHANG PETROLEUM (CHINA)

Pulp & Paper

- TJIWI KIMIA SURABAYA PAPER MILL(INDONESIA)
- MONDI RICHARDS BAY 3RD STEAM TURBINE (SOUTH AFRICA)
- TJIWI KIMIA TK4 PROJECT (INDONESIA)
- CHENG LOONG CORP. VIETNAM CLVP PAPER MILL (VIETNAM)

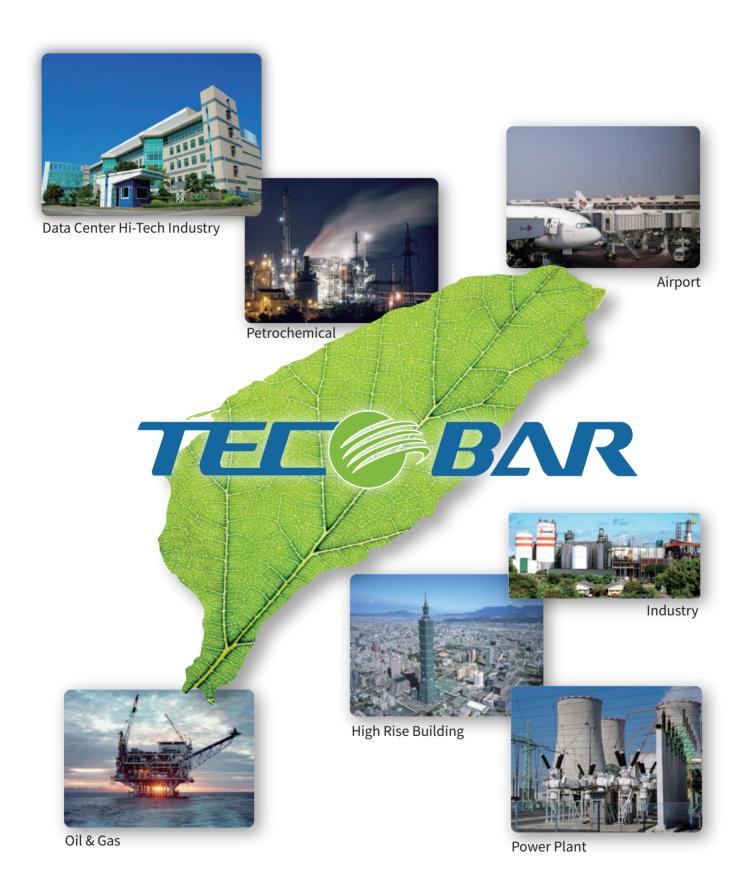
Textile

- FEPV CHEMICAL FIBER POWER **DISTRIBUTION STATION (VIETNAM)**
- LEALEA ENTERPRISE CHUNGHWA PLANT (TAIWAN)

Factory

- MONSANTO (THAILAND)
- FORMOSA CHEMICALS & FIBER **CORPORATION - NINGBO**
- SAMSUNG ASSEMBLY FACTORY (CHINA)
- SSANGYONG E&C (SOUTH KOREA)

• TAN BURRUP (AUSTRALIA)




51 HILL S S

Projects Reference List

TAIAN-ECOBARTECHNOLOGYCO., LTD.

WEBSITE: http://www.tecobar.com.tw Taipei Office:
11F., No.156-2, Songjiang Rd.,
Zhongshan Dist., Taipei City 104, Taiwan (R.O.C.) TEL:+886-2-2522-1663

FAX:+886-2-2522-1664

TECO

We reserve the right to change, at any time and without prior warning the technical specification of any product illustrated in this catalogue.

Catalog Number : TETC-2019-07